青春草在线观看精品免费视频,青青网免费无码在线,久久亚洲国产成人精品性色,99视频在线观看免费-亚洲无码av黄色-99國產人人-欧美少妇一区二区三黄色片

師資

EN       返回上一級(jí)       師資搜索
Iryna kashuba
副教授

教育背景: 
巴西圣保羅大學(xué),數(shù)學(xué)博士,2000年4月-2004年7月
德國(guó)凱澤斯勞滕大學(xué)數(shù)學(xué)碩士 1997年9月-2000年3月
基輔國(guó)立大學(xué)數(shù)學(xué)學(xué)士 1993年9月-1997年7月

工作經(jīng)歷:
南方科技大學(xué)副教授,2023-至今
圣保羅大學(xué)副教授,2013-2023年
2006-2013年,圣保羅大學(xué)助理教授


代表文章:

1. L. Bezerra, L. Calixto, V. Futorny, I. Kashuba, Representations of affiffiffine Lie superalgebras and their quantization in type A, Journal of Algebra 611, (2022), 320–340.
2. M. Guerrini, I. Kashuba, O. Morales, A. Oliveira, F. Santos Generalized Imaginary Verma and Wakimoto modules, Journal of Pure and Applied Algebra, 227, (2023), no. 7, 1–18.
3. Kashuba I., Mathieu O., ”O(jiān)n the free Jordan algebras”, Advances in Math., 383, (2021), 107690.
4. Borges V., Kashuba I., Sergeichuk V., Sodre E., Zaidan A., ”Classifification of Linear operators satisfying (Au, v) = (u, Arv) or (Au, Arv) = (u, v) on a vector space with indefifinite scalar product”, Linear Algebra and Appl., 611, (2021), 118-134.
5. Kashuba I., Serganova, V., ”Representations of simple Jordan superalgebra”, Advances in Math., 370, (2020), 107218.
6. Kashuba I., Futorny, V., ”Structure of parabolically induced modules for Affiffiffine Kac-Moody algebras”, Journal of Algebra, 500, (2018), 362-374.
7. Kashuba I., Martin, M. E., ”Geometric classifification of nilpotent Jordan algebras of dimension fifive”, Journal of Pure and Applied Algebra, 222 (3), (2018), 546-559.
8. Holubowski W., Kashuba I., Zurek S., ”Derivations of the Lie algebra of infifinite strictly upper triangular matrices over a commutative ring”, Comms. in Algebra, 45 (11), (2017), 4679-4685.
9. Kashuba I., Serganova, V., ”O(jiān)n the Tits-Kantor-Koecher construction of unital Jordan bimodules”, Journal of Algebra, 481, (2017), 420-463.
10. Kashuba I., Ovsienko S., Shestakov I., ”O(jiān)n representation type of Jordan basic algebras”, Algebra and Discrete Mathematics, 23 (1), (2017), 47-61.
11. Kashuba I., Martin, M. E., ”The variety of three-dimensional real Jordan algebras”, Journal of Algebra and Appl, 15 (8), (2016), 1650158.
12. Kashuba I., Zelenyuk Yu., ”The number of symmetric colorings of the dihedral group D3”, Quaestiones Mathematicae, 39(1), (2016), 65-71.
13. Kashuba I., Martin, M. E., ”Deformations of Jordan algebras of dimension four”, Journal of Algebra, 399, (2014), 277-289.
14. Kashuba I., Martin R., ”Free fifield realizations of induced modules for affiffiffine Lie algebras”, Communications in Algebra, 42 (6), (2014), 2428-2441.
15. Bekkert V., Benkart G., Futorny V., Kashuba I., ”New irreducible modules for Heisenberg and affiffiffine Lie algebras”, Journal of Algebra, 373, (2013), 284-298.
16. Hrivnak J., Kashuba I., Patera J., ”O(jiān)n E-functions of semi-simple Lie groups”, J.Physics A: Math. Gen., 44, (2011), 325205.
17. Kashuba I., Ovsienko S., Shestakov I., ”Representation type of Jordan algebras”, Advances in Math. , 226, (2011), 385-418.
18. Kashuba I., Shestakov I., ”An estimate of a dimension of a variety of alternative and Jordan algebras”, Contemporary Mathematics, 499, (2009), 165-171.
19. Futorny V., Kashuba I., ”Induced Modules for Affiffiffine Lie Algebras”, SIGMA, 5, (2009), 026.
20. Kashuba I., Patera J., ”Discrete and continuous exponential transform generalized to semisimple Lie groups of rank two”, J.Physics A: Math. Gen. 40 (2007), 4751-4774.
21. Kashuba, I. ; Shestakov, I., ”Jordan algebras of dimension three: geometric classifification and rep-resentation type”, In: XVI Coloquio Latinoamericano de ′Algebra, 2007, Colonia del Sacramento. Revista Matem′atica Iberoamericana.
22. Kashuba I., ”Variety of Jordan algebras in small dimensions”, Algebra Discrete Math., 2, (2006), 62-76.
23. Drozd Yu., Greuel G.-M., Kashuba I., ”O(jiān)n Cohen-Macaulay modules on surface singularities”, Moscow Mathematical Journal, 3 (2003), 397-418.
24. Kashuba I., Patera J., ”Graded contractions of Jordan algebras and of their representations”, J.Physics A: Math. Gen. 36 (2003), 12453-12473.
25. Futorny V., Kashuba I., ”Verma type modules for toroidal Lie algebras”, Communications in Algebra, 28 (8), (1999).


华安县| 理塘县| 团风县| 龙门县| 正镶白旗| 闽清县| 永昌县| 台中县| 黔江区| 凤山市| 南宫市| 南阳市| 宜兰县| 郑州市| 呈贡县| 武强县| 新乡市| 淳化县| 长海县| 蒙阴县| 象州县| 贵南县| 大冶市| 微山县| 镇沅| 铜川市| 灵丘县| 灯塔市| 勃利县| 合肥市| 孟津县| 武冈市| 惠安县| 阜新市| 渝中区| 保亭| 景洪市| 武城县| 平泉县| 湟源县| 兴安县|