師資
個人簡歷
本科:
數學系, 南京大學, 2007年9月- 2011年7月.
博士研究生:
博士研究生 , 計算數學 , 中國科學院數學與系統(tǒng)科學研究院 , 2011年9月 - 2014年9月 ,
博士導師: 陳志明, 研究員, 計算數學與科學工程計算研究所
博士:
計算數學, 數學系, 巴黎高等師范學校, 2014年9月 - 2017年7月,
博士導師:Habib Ammari, 教授, 蘇黎世聯(lián)邦理工學院.
博士后:
數學系, 南方科技大學, 2017年9月-2019年10月
訪問助理教授:
數學系, 南方科技大學, 2019 年11月-2022年5月
助理教授:
數學系, 南方科技大學, 2022年6月至今
研究方向
反問題
不確定性分析
經驗過程應用
成像方法
均勻化理論
偏微分方程數值方法
教學
2017-2018 Teaching assistant for 'Finite element method'
2017-2018 Teaching assistant for 'Selected topics in partial differential equations’
2019 Teach tutorial classes of 'Linear algebra' including Chinese class and English class
2020 Teach classes of 'Linear algebra' and 'Ordinary differential equations A' (2020 年春季學期常微分方程A,2020年秋季學期線性代數I-A)
2021 Teach class of 'Ordinary differential equations A' (2021年春季學期常微分方程A)
2021 Teach classes of 'Linear algebra' and 'Ordinary differential equations B' (2021 年秋季學期常微分方程B,2021年秋季學期線性代數I-A)
發(fā)表論著
[1] H. Ammari, G.S. Alberti, B. Jin, J.-K. Seo and W. Zhang, The Linearized inverse problem in multifrequency electrical impedance tomography, SIAM Journal on Imaging Sciences, 2016, 9:1525-1551.
[2] H. Ammari, T. Widlak and W. Zhang, Towards monitoring critical microscopic parameters for electropermeabilization, Quarterly of Applied Mathematics, 2017, 75: 1-17.
[3] H. Ammari, L. Qiu, F. Santosa and W. Zhang*, Determining anisotropic conductivity using Diffusion Tensor Magneto-acoustic Tomography with Magnetic Induction, Inverse Problems, 2017, 33: 125006.
[4] Z. Chen, R. Tuo and W. Zhang, Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data, SIAM Journal on Numerical Analysis, 2018, 56: 635-659.
[5] H. Ammari, B. Jin and W. Zhang*, Linearized Reconstruction for Diffuse Optical Spectroscopic Imaging, Proceedings of the Royal Society A, 2018, 475: 20180592.
[6] Z. Chen, R. Tuo and W. Zhang, A Balanced Oversampling Finite Element Method for Elliptic Problems with Observational Boundary Data, Journal of Computational Mathematics, 2020, 38, 355-374.
[7] M. V. Klibanov, J. Li and W. Zhang, Convexification of Electrical Impedance Tomography with Restricted Dirichlet-to-Neumann Map Data, Inverse problems, 2019, 35: 035005.
[8] M. V. Klibanov, J. Li and W. Zhang, Convexification for the Inversion of a Time Dependent Wave Front in a Heterogeneous Medium, SIAM Journal on Applied Mathematics, 2019, 79(5), 1722–1747.
[9] M. V. Klibanov, J. Li and W. Zhang*, Convexification for an inverse parabolic problem, Inverse problems, 2020, 36: 085008.
[10]V. Klibanov, J. Li and W. Zhang*, Linear Lavrent’ev Integral Equation for the NumericalSolution of a Nonlinear Coefficient Inverse Problem, SIAM Journal on Applied Mathematics, 2021, 81(5), 1954–1978.
[11] Z. Chen, W. Zhang, J. Zou, Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems, SIAM Journal on Numerical Analysis, 2022, 60(2), 751-780.
[12] M. V. Klibanov, J. Li and W. Zhang*, A Globally Convergent Numerical Method for a 3D Coefficient Inverse Problem for a Wave-Like Equation, SIAM Journal on Scientific Computing, 44(5), A3341–A3365.